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What is chemotaxis?

Chemotaxis: directed movement of
cells/organisms in response to the
chemical concentration gradient.

Application: Wound healing, cancer
growth (or metastasis), embryo
development, bacterial movement,
predator-prey system, etc.

© attractive chemotaxis: if
movement is up the chemical
concentration gradient;

@ repulsive chemotaxis: if
movement is down the chemical
concentration gradient.



Typical patterns of chemotaxis
Attractive chemotaxis: aggregation and wave propagation

Experiments for E. Coli (by Adler 1966 and Berg-Budrene 1995):

Repulsive chemotaxis: uniformization/homogenization



Chemotaxis model (By Keller and Segel in 1971)

Let u denote cell (particle) density and v chemical concentration. If the cell
kinetics (growth and death) is ignored, then

u+Vv-J=0
where J denotes the cell flux which is made up of two parts

J= Jdiffusion + Jchemotaxis-

Here diffusive flux
Jaiffusion = _D(U, V)VU

was due to Fick’s law and describesthe random dispersion of cells, and the
chemotactic flux

Jchemotaxis = XUd)(V)VV = XUV¢(V)
contributes a directed movement due to the presence of chemical
concentration gradient.

The model governing the chemical dynamics is a reaction-diffusion equation

Vi = AV +g(u, V).



Chemotaxis model

The coupling of above equations gives the following chemotaxis system:
Keller-Segel model

Vi = eAv +g(u,v).

u - cell density; v - chemical concentration;

x > 0 — attractive
X < 0 —repulsive
¢(v) - chemotactic sensitivity (potential) function;
¢ - chemical diffusion coefficients;

x - chemotactic coefficient {

Frequently used forms of ¢(v) :
© Linear law: ¢(v) = v (aggregation); = "Classical (minimal) Keller-Segel
model” if g(u,v) = au — Bv;
@ Logarithmic (Weber-Fechner) law: ¢(v) = logv (wave propagation);
© Receptor law: ¢(v) = 5
More forms, see “Tindall-Maini-Porter-Armitage, Bull. Math. Biol.,
70:1570-1607, 2008".



Minimal parabolic-elliptic chemotaxis model

U=V -(DVu —xuVv), xeQ
Vi = AV 4+ au — gv, X €N
= =0, x € 0Q

v

where v denotes the outward normal vector of 09.

@ Jager and Luckhaus 1992 1: N = 2 and § is of order 7 and « is of order
1, for the limiting case 7 — 0,

U =V-(DVu —xuvv®),
0 =Av*+4a(u-—U)
where v =v —V(t), f = & [, f(x)dx

In radially symmetric case, initial values were constructed such that
blow-up of u occurs in finite time.

1w, Jager and S. Luckhaus, On explosion of solutions to a system of
partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc.,
329: 819-824, 1992.



Minimal parabolic-elliptic chemotaxis model

@ a and 3 are of the same order 1: T. Nagai (1995) 2= Parabolic-elliptic

KS model
u =V (DVu—xuVv), xeQ
0=Av +au—pv, X €N
u =2 -0, x € 0Q

where Q = By(R) is the open ball of radius R centered at the origin.

© WhenN =1andN =2and [, up(x)dx < S”D , then;
@ N = 2, there is a critical number (mass) § = S’TD such that solution

exists globally with a uniform-in-time bound if fQ Up(x)dx < 6, and
solution blows up at the origin x = 0 if fQ Up(x)dx > 6

© WhenN > 3 the solution blows up in finite time at the origin x = 0
if 0 < My(O f Uo(X)|x|¥dx < c(uo) where wy is the area of the
unit sphere SN Lin RN and 0g = Mp(0) = wa Uo (X

© The above results are valid for the J'ager-Luckhaus’s model.

2T. Nagai, Blow-ip of radially symmetric solutions to a chemotaxis system,
Adv. Math. Sci. Appl., 2: 581-601, 1995.



Minimal parabolic-elliptic chemotaxis model
In a general smooth domain 2 (non-radial solutions)

U =V -(DVu —xuvv), xeQ

0=AvV+au—pv, X €Q
D=2 =0, x € 0Q

@ T. Nagai (1997) 3: Let fQ Up(x)|x — g|dx be sufficiently small (meaning

the mass is concentrated at x = g since otherwise the smallness can not
be ensured). Then

© If g € Q, solution blows up in finite time if Jo Uo(x)dx > 8’TD
@ If g € 99, solution blows up in finite time if [, uo(x)dx > 4”D

@ P. Biler (1998) #: solution exist globally if

I X)d %;r—f, if ug is radially symmetric
Uo X < .
Q %, otherwise

3T. Nagai, Blowup of nonradial solutions to parabolic-elliptic system modeling
chemotaxis in two-dimensional domains, J. Inequal & Appl., 6: 37-55, 2001.

“p, Biler, Local and global solvability of some parabolic systems modeling
chemotaxis, Adv. Math. Sci. Appl., 8: 715-743, 1998.



Classical (minimal) parabolic-parabolic KS model

ur = V- (DVu — xyuVvv), xeQCcRNt>0
Vi = AV 4 au — BV, xeQCRVt>0
u_a_g X € 0Q,t >0

(x 0)_u0( ),V (X,0) =vo(x), X €.
Attractive case (y > 0):
@ N =1, uniform boundedness (Osaki-Yagi 2001, Funkcial. Ekvac.)
@ N=2(M = [, up(x)dx) =
© Nagai, Senba and Yoshida °: Global solution exists with
uniform-in-time bound if M < 42, or M < 22 if Q is a disk.

© Herrero and Velazquez (1996) ©: e. constructlon of blow-up solution
and show that 8”5 is the critical mass if Q is a disk in R2.
© Horstmann and Wang 7: Forevery M > 42 and M # %2 k € N*,
solution may blow up either in finite or infinite time.
5T. Nagai, T. Senba and K. Yoshida, Applications of the Trudinger-Moser inequality

to a parabolic system of chemotaxis, Funcialaj Ekvacioj, 40: 411-433, 1997

5M.A. Herrero and J.J.L. Velazquez. Chemotactic collapse for the Keller-Segel
model. J. Math. Biol., 35:177-194, 1996.

D, Horstmann and G. Wang. Blow-up in a chemotaxis model without symmetric
assumptions. European J. Appl. Math., 12:159-177, 2001.




Classical parabolic-parabolic KS model

Open question for N = 2: whether the blowup time is finite or infinite?
@ N>3:

© M. Winkler (2010)8: N > 3 and Q is a ball, the solution may blow up
in finite or infinite time for any M = [, updx > 0.

@ M. Winkler (2013)°: N > 3 Q is a ball, radial solution blows up in
finite time for any M = [, up(x)dx > 0;

Remark: All above works essentially used the time-monotone Lyapunov
(energy) functional.

Comprehensive review of all detailed results, see “Horstmann 2003,
Jahresbericht Der DMV .

8M. Winkler. Aggregation vs. global diffusive behavior in the
higher-dimensional Keller-Segel model. J. Diff. Eqns., 248: 2889-2905, 2010.

M. Winkler. Finite-time blow-up in the higher-dimensional parabolic
parabolic Keller-Segel system, J. Math. Pures. Appl., 100: 748-767, 2013



Classical parabolic-parabolic KS model

Repulsive Keller-Segel model:

ur = V- (DVu — xyuVvv), xeQCcRNt>0
Vi = AV 4 au — BV, xeQCcRVt>0
gu =2 =0, X € 9Q,t >0

u(x,0) = ug(x),v(x,0) = vp(x), x € Q.
Repulsive case (y < 0): Cie$lak, Laurengot and Morales-Rodrigo 1°

@ N =1, 2: Global solutions exist and converge to the unique constant
stationary solution exponentially as t — oo;

@ N = 3,4: Global weak solutions exist.

Note: The time-monotone Lyapunov functional was essentially used.

197, Cieslak, P. Laurencot and C. Morales-Rodrigo, Global Existence and
Convergence to Steady-States in a Chemo-repulsion System, Banach Center
Publications, 81 (Polish Acad. Sci.):105-117, 2008



Attraction-Repulsion Keller-Segel (ARKS) model

“Attraction-Repulsion Keller-Segel model”:

Ut = Au — V- (xuVv)+V - (EuVw), xe, t>0,
Vi = AV + au — v, xeQ, t>0,
Wi = AW + YU — 6w, xe t>0.

Why is this model of interest and importance?

@ Luca et al, Bull. Math. Biol. 2003: aggregation of microglia and
formation of local accumulation of chemicals observed in Alzheimer’s
disease (u-density of Microglia, v-concentration of Interleukin-13,
w-concentration of Tumor necrosis factor-«);

@ Painter-Hillen, Canadian Appl. Math. Q 2003: quorum sensing effects in
chemotaxis;

Mathematical challenges: no obvious Lyapunov functional exist and most (if
not all) existing approaches are not applicable directly.

First results: Tao-Wang, Math. Models Methods. Appl. Sci. (M2AS), 23:1-36,
2013: g =d and 5 # 0.



ARKS model

Ut = Au — V- (xuVv)+V - (&uVw), xeQ, t>0,
Vi = AV + au — v, xeQ, t>0,
Wi = AW + YU — 6w, XxXe t>0,
u _ v _ ow _

U=y —aW_Q, X €09, t>0,
(u,v,w)(x,0) = (ug, Vo, Wo)(X), X € Q.

It was found by Tao-Wang that the solution behavior of the ARKS model was
essentially determined by the competition of attraction and repulsion which is
characterized by the sign of ya — £v. The number

0=xa—¢&y

is defined as the competition index. The biological interpretation of the sign of
0 is as follows:

@ 0 > 0 & attraction dominates;
@ 0 = 0 < repulsion balances/cancels attraction;

@ 6 < 0 < repulsion dominates;



Main ideas for case of g = § (same death rates)

© If0+#0, then sets = §(éw — xv). The ARKS model becomes

U = Au — 0V - (uVs),
St = As — s + U,

Vi = AV + au — v,
Wi = AW + YU — dw.

Observation: The first two equations constitute an exact classical KS
model, and hence existing approaches (i.e. Lyapunov functional
approach) on the classical KS model can be applied.

@ 110 =0, then sets = éw — yv and the model becomes
Ug = Au+ V- (uVs),
St = As — §s,
Vi = AV + au — Bv,
W = AW + YU — dw.



Results for case of 5 = ¢ / Tao-Wang (2013)

@ (Stationary solutions (S.S)) Let N > 1. Then
(2) If 6 > O (attraction dominates), there is a non-constant S.S

(2) If & < O (repulsion dominates) or # = 0 (repulsion balances
attraction), there is a unique constant S.S (U, %Uo, %Uo)

@ (Large-time behavior) Let N = 2 and 0 < ug, Vo, Wo € W1>°(Q). If < 0
(repulsion dominates/cancels attraction), there is a unique non-negative
classical solution which converges to (Up, & Buo, BUO) ast — oo

@ (Blow-up) Let N =2 and ¢ > O (attraction dominates). If [, uo > 9 , the
solution blows up in finite/infinite time.

A

S -
07 x 0

0>0



Important Question

[ - y o 1 -
00 x 0% x 0

>0 <0

Conclusion: there is no pattern formation in 2-D when g = 4.

Question: Is there pattern formation in 2-D for 5 # 6.



Pattern formation

Pattern formation: a constant equilibrium loses stability under spatially
inhomogeneous perturbations when a parameter changes, and some
stable non-constant spatially non-homogeneous solutions arise.

Method: Linear stability analysis (identifying the instability regime of
parameters)+Global (or Hopf) bifurcation theory (rigorous analysis).

Theorem [Liu, Shi and Wang, DCDS-B, 2013]. Let (u,v,w) be a
positive constant equilibrium point and define
p* +9)%(2p* + B)

(8 —0)p*

where p* is the unique positive root of the equation

A = A% (8,5) = ¢

4p® + (46 + B)p? = 2.

Then we have for N = 1:
(@) B > d and £&~U > A*; = non-constant steady state
(b) § > por g >4dandEvyu < A*; = time-periodic pattern



Periodic rippling patterns for case (a)
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Case of 5 # 0 (lack of Lyapunov functional)

Case 1: Parabolic-Elliptic-Elliptic (P-E-E) model:
U =Au — V- (xuVv) + V- (EuVw), x €, t>0,
0=Av +au— v, xeQ, t>0,
0= AW + yu — ow, xeQ, t>0,
d d 2
gu—v—am_gq, X €0, t>0,
u(x,0) = up(x), X € Q.

@ Tao-W. (2013): Assume that 0 < up(x) € Wh>(Q) and 6 = ya — &y <0
(repulsion dominates or cancels attraction). Then for any n > 2 and any
B> 0,6 > 0, there exists a unique classical non-negative solution
(u,v,w)in C%(Q x [0, 00)) N C>1(Q x (0, 00)).

Main idea of proof: LP-estimates + parabolic and elliptic regularity.
@ Espejo and Suzuki (2014, AML): If 6 = xa — &y > 0 (attraction

. 8m . "
dominates), the number 777 is the critical mass;



Case of 5 # 0

Case 2: Parabolic-Parabolic-Parabolic (P-P-P) ARKS model:
U =Au — V- (xuVv) + V- (§uVw), x e t>0,
Vi = AV + au — BV, xe t>0,
Wi = AW + YU — 6w, x e t>0,
U _ ov _ ow _
8_378_\;,8_": 0, X €0, t>0,
(u,v,w)(x,0) = (uo, Vo, Wo)(X), X € Q.

@ Tao-Wang (2013): LetN =2 and § = ya — &y < 0 (repulsion
dominates). Assume that 0 < ug, Vo, Wg € W1°°(Q) with
Jouo < Czﬁx(i% Then the P-P-P model admits a unique global
classical solution, where Cgy is determined from:
111y < Con (112 I 22y + IFlgqy)-
Main idea: Entropy inequality+Moser iteration+regularity theory.

@ Liu-Tao (2014) and Jin (2014): Global classical solutions for any
Jq Uodx > 0.

Open: Dynamics for § = ya — £y > 0 (attraction dominates).



Case of 5 # 0

Case 3: Parabolic-Parabolic-Elliptic (P-P-E) ARKS model:
U =Au—V-(xuVv)+ V- (éuVw), xeQ t>0,
Vi = AV 4 au — [v, xeQ, t>0,
0=Aw +~vyu — éw, xeQ, t>0,
u _ v _ ow _
U= = _gq, X €0, t>0,
\ (U,V)(X,O) = (Uo,Vo)(X), X € Q.

@ Jin-Wang (2014): Assume that 0 < (up, Vo) € [W1>(Q)]? and
X, &, a,8,7v,6 > 0. Thenif # < 0 (repulsion dominates or balances
attraction), there P-P-E ARKS model has a unique classical
solution (u,v,w) € C(Q x [0,00)) N C%(Q x (0, 00)) such that

Ju(,t)lle <C

where C is a constant independent of t.



Case of 5 # 0

Case 3: Parabolic-Parabolic-Elliptic (P-P-E) ARKS model:
=Au—V-(xuVv)+ V- (EuVvw), Xxe, t>0,
Vi = AV + au — BV, xe t>0,
0= AwW + yu — dw, xeQ, t>0,
d d a
=5 o =0 x €909, t >0,
( ) )(X,O) = (UO,VO)(X), X € Q.

@ Jin-Wang (2014): Assume that 0 < (up, Vo) € [W1>°(Q)]? and

x; &, 8,7,6 > 0. LetM = [, up(x)dx. If & > O (attraction dominates),
then the followmg alternatives hold

() IfM < 4z 7 (subcritical mass) then the P-P-E ARKS model admits a
unique classmal solution (u,v,w) € C(Q x [0,00)) N C2%(Q x (0, x0))
such that |Ju(-,t)||L~ < C for a constant C independent of t.

(ii) If M > 2% (supercritical mass) and M ¢ {42 : m € N*} where N*
denotes the set of positive integers, then there exist initial data such that
the solution of the P-P-E ARKS model blows up in finite or infinite time.



Sketch of ideas: boundedness for subcritical mass

Lemma (Key Lemma)

If there is a constant C; > 0 such that the solution of P-P-E ARKS model
satisfies

t
Julnuls + [ a(m)]fdr < Ca,
0
then there exists a constant C, > 0 such that

[ufl.e < Ca.

1)

Procedure of proving boundedness:

Energy Regularity Moser
ullee — [[ullis 1(VV, VW) [Lee —— [|ul|L
stimates Theorem Iteration

Key: Prove (1).
How: Lyapunov functional:

F(u,v,w):/uInudx+1/(Bv2+|Vv|2)dx
Q 200 Jg
£

+—/(5w2+ |Vw [?)dx —X/ uvdx.
2y Ja Q




Sketch of ideas: blowup for supercritical mass

Lemma 1 (Energy decay)

Suppose that (u,v,w) is a global and bounded solution of the P-P-E ARKS
model. Then there exists a sequence of times tx — oo and nonnegative
function (Use, Voo, Woo) € [C?(Q)]° such that

(U, te), V(s te), W (s te)) = (Usos Vo, Woo ) in [C2(Q)]3. Furthermore,

(Uoo, Voo, Woo ) IS a steady state of the P-P-E ARKS model, such that

F(uooavooawoo) S F(UO;V07WO)-

Use the well-known function (Chen and Li)

8re?

(€2 + m|x — Xo|?)?

¢5(X)—|n< ),€>O,X06R2.

which is the solution of

—A(x) =e??®) x € R?
/ e?Mdx < oco.
RZ

We construct the sequence:



Sketch of ideas: blowup for supercritical mass

6ve (x) it
UE(X - ane%"e(x)dx’ 0=
Ws(x) = %VE(X)

and then show
Lemma 2 (large negative steady-state energy)

Assume M > 47’7. If Xog € 012, then as € — 0, it follows that
F(u,Ve,W.) — —oo and / |V, [2dx = %/ |Vw,|2dx — oo.
Q Q

Moreover
Lemma 3 (Lower bound for steady-state energy):

Suppose M # 4 for all m € N*. Let ({i,V, W) be a steady state of ARKS
model. Then there exists a constant K > 0 such that

F(0,0,W) > —K.




Sketch of ideas: blowup for supercritical mass

Theorem

Assume M > 4T and M ¢ {42 : m € N*}. Then there exists initial
data (ug, Vo) such that the corresponding solution of the P-P-E ARKS
model blows up (in finite or infinite time).

Proof. By Lemma 2, we can find g such that
F(Uzy, Ve, Wep) < —K.

Define (Ug, Vo, Wo) = (Uey, Ve, Ve, )- If (U, v, W) is globally bounded, then
by Lemma 1, we have

F (Uso, Voo, Weo ) < F(Ug, Vo, Wp) < —K

which contradicts Lemma 2.



Summary and future works

Conclusions:

@ Time-periodic pattern can be found in the ARKS model, which
was impossible for the classical KS models with one chemical due
to the existence of time-monotone of Lyapunov functional;

@ Death rates of two chemicals are crucial for the pattern formation.

Other works:

@ R. Shiand W. Wang, well-posedness of ARKS model on
unbounded domain;

@ X. Liand Z. Xiang, ARKS model with cell kinetics;
@ Wacher and Kaja (2012), Numerical computation of ARKS model.

Interesting opening questions:
@ The solution behavior for the P-P-P system when £y — xa < 0;

@ Amendment of the ARKS model such that aggregation or wave
propagation patters are possible;



Ongoing works
Modified attraction-repulsion chemotaxis model such that:
@ Attraction and repulsion has a dynamical interaction, and
aggregation is generated regardless of the sign of # (domination);
We consider the following attraction-repulsion chemotaxis model:

(Ui =Au—V-(xuVv)+ V- (&u™vVw), Xxe€Q, t>0,
TVt = AV + au — v, xe t>0,
ToWg = AW + yU — 6w, xeQ, t>0,
%:g_\;:@a_\g:o’ X e€eo,t>0,
(u, 71V, 7oaW)(X, 0) = (Ug, T1Vo, T2Wo)(X), X € Q.

Theorem

Let Q be a bounded domain in R"(n > 1) and 0 < up € W1>(Q).
Then above system with 71 = 7, = 0 has a classical solution

(u,v,w) € C(Q x [0,00)) N C?1(Q x (0,0)) for each m > 1 and

X, &, a,B,7,0 > 0, and there is a constant ¢ independent of t such that
Hu('7t)HL°° <C.




Numerical pattern formation 0 = ya — &y

0>0

Note. The modified model does show the pattern formation no matter how
attraction and repulsion interact.



Numerical pattern formation 0 = ya — &y

0>0 =0

Note. The modified model does show the pattern formation no matter how
attraction and repulsion interact.



Numerical pattern formation 0 = ya — &y

0>0 6=0 0<0

Note. The modified model does show the pattern formation no matter how
attraction and repulsion interact.
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